Algebra Qualifying Exam II (May 2019)

1. (10 points) Let $R=k[x, y]$ be a polynomial ring in two variables over a field k. Find a module over R, which is finitely generated torsion free but not free.
2. (10 points) Let a be a rational number such that $-\frac{1}{2}<a<\frac{1}{2}$. Prove that $\tan (a \pi)$ is algebraic over \mathbb{Q}.
3. (10 points) Let $\zeta_{7}=e^{2 \pi \sqrt{-1} / 7}$ and let $E=\mathbb{Q}\left[\zeta_{7}\right]$. Explicitly determine all the fields L such that $\mathbb{Q} \subset L \subset E$.
4. (10 points) Consider the polynomial

$$
f(x)=7 x^{5}+4 x^{2}+6 x+30 .
$$

Let $\alpha \in \mathbb{C}$ be a complex number such that $f(\alpha)=0$.
(a) Prove that the polynomial $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(b) Let $\beta=\sqrt[16]{2}$. Prove that $\alpha \notin \mathbb{Q}[\beta]$.
5. (10 points) Let K be a finite field, and let $f \in K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial in n variables. Let E be a finite field extension of K. Define the sum

$$
S_{f}=\sum_{\left(a_{1}, \ldots, a_{n}\right) \in E^{n}} f\left(a_{1}, \ldots, a_{n}\right)
$$

Prove that $S_{f} \in K$.
6. (10 points) Let E be the splitting field of the polynomial $f(x)=x^{4}-2 x^{2}-2$ over \mathbb{Q}. Prove that the Galois group $\operatorname{Gal}(E / \mathbb{Q})$ is isomorphic to the dihedral group

$$
\left.D_{4}:=\langle r, s| r^{4}=1, s^{2}=1, \text { srs }=r^{-1}\right\rangle
$$

