Algebra Qualifying Exam II (May 2019)

- 1. (10 points) Let R = k[x, y] be a polynomial ring in two variables over a field k. Find a module over R, which is finitely generated torsion free but not free.
- 2. (10 points) Let a be a rational number such that $-\frac{1}{2} < a < \frac{1}{2}$. Prove that $\tan(a\pi)$ is algebraic over \mathbb{Q} .
- 3. (10 points) Let $\zeta_7 = e^{2\pi\sqrt{-1}/7}$ and let $E = \mathbb{Q}[\zeta_7]$. Explicitly determine all the fields L such that $\mathbb{Q} \subset L \subset E$.
- 4. (10 points) Consider the polynomial

$$f(x) = 7x^5 + 4x^2 + 6x + 30.$$

Let $\alpha \in \mathbb{C}$ be a complex number such that $f(\alpha) = 0$.

- (a) Prove that the polynomial f(x) is irreducible in $\mathbb{Q}[x]$.
- (b) Let $\beta = \sqrt[16]{2}$. Prove that $\alpha \notin \mathbb{Q}[\beta]$.
- 5. (10 points) Let K be a finite field, and let $f \in K[x_1, \ldots, x_n]$ be a polynomial in n variables. Let E be a finite field extension of K. Define the sum

$$S_f = \sum_{(a_1,\dots,a_n)\in E^n} f(a_1,\dots,a_n).$$

Prove that $S_f \in K$.

6. (10 points) Let E be the splitting field of the polynomial $f(x) = x^4 - 2x^2 - 2$ over \mathbb{Q} . Prove that the Galois group $\operatorname{Gal}(E/\mathbb{Q})$ is isomorphic to the dihedral group

$$D_4 := \langle r, s \mid r^4 = 1, s^2 = 1, srs = r^{-1} \rangle$$